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Abstract We make use of the conformal compactification of Minkowski spacetime
M* to explore a way of describing general, nonlinear Maxwell fields with conformal
symmetry. We distinguish the inverse Minkowski spacetime [M*]~! obtained via
conformal inversion, so as to discuss a doubled compactified spacetime on which
Maxwell fields may be defined. Identifying M* with the projective light cone
in (4 4+ 2)-dimensional spacetime, we write two independent conformal-invariant
functionals of the 6-dimensional Maxwellian field strength tensors—one bilinear,
the other trilinear in the field strengths—which are to enter general nonlinear
constitutive equations. We also make some remarks regarding the dimensional
reduction procedure as we consider its generalization from linear to general
nonlinear theories.
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1 Introduction

It is well-known that in (3 + 1)-dimensional spacetime (Minkowski space), denoted
M®  Maxwell’s equations respect not only Poincaré symmetry, but also conformal
symmetry. But the physical meaning of this conformal symmetry is still not entirely
clear. A historical review is provided by Kastrup [6].

In our ongoing work, we have been investigating the characterization of general,
nonlinear conformal-invariant Maxwell theories [2]. Our strategy is to make use
of the identification of the conformal compactification M* of Minkowski space
with the projective light cone in (4 4 2)-dimensional spacetime ¥ ©® [1]. Poincaré
transformations, dilations, and special conformal transformations act by rotations
and boosts in Y ©. Nikolov and Petrov [9] consider a linear Maxwell theory in
Y©® and carry out a ray reduction and dimensional reduction procedure to obtain
conformal-invariant theories in M. The result is a description of some additional
fields that might survive in M @, To handle nonlinear Maxwell theories, we allow
the constitutive equations to depend explicitly on conformal-invariant functionals
of the field strength tensors (with the goal of carrying out a similar dimensional
reduction). This parallels, in a certain way, the approach taken by two of us in earlier
articles describing general (Lagrangian and non-Lagrangian) nonlinear Maxwell
and Yang—Mills theories with Lorentz symmetry in M® [3, 4].

This contribution surveys some of the key ideas underlying our investigation. A
major tool is to focus on the behavior of the fields and the coordinates under confor-
mal inversion. We introduce here the resulting “inverse Minkowski space” obtained
via conformal inversion, and consider the possibility of defining Maxwellian fields
independently on the inverse space. We also write two independent conformal-
invariant functionals of the Maxwell field strength tensors in ¥©—one bilinear,
the other trilinear in the field strengths. These are the functionals which are to
enter general nonlinear constitutive equations in the (4 + 2)-dimensional theory. We
also make some remarks regarding the dimensional reduction procedure from six to
four dimensions, as we consider its generalization from linear to general nonlinear
theories.

2 Conformal Transformations and Compactification

2.1 Conformal Transformations in Minkowski Space

The full conformal group for (3 4 1)-dimensional Minkowski spacetime M@, as
usually defined, includes the following transformations. For x = (x*) € M @,
w=20,1,2,3, we have:

translations:

XP = (Tyx)* =xt —bH; 2.1)
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spatial rotations and Lorentz boosts, for example:

v

0=y =BxY, XM=y =8, -1<p= - <1, y= (1_132)—%;
2.2)
or more generally,
x'* = (Ax)* = A x" (Einstein summation convention); (2.3)
and dilations:
P =Dy x)* =P, A>0; (2.4)

all of which are causal in M™® . Let us consider conformal inversion R, which acts
singularly on M® | and breaks causality:

x'* = Rx)* =x"/x,x", where (2.5)
xoxV =guxux’,  gu =diag[l, -1, -1, —1]. (2.6)

Evidently R? = I. That is, neglecting singular points, conformal inversion is
like a reflection operator: inverting twice yields the identity operation. Conformal
inversion preserves the set of light-like submanifolds (the “light rays”), but not the
causal structure. Locally, we have:

1
guvdx'Mdx"V = o) guvdxtdx"”. 2.7
o

Combining inversion with translations, and inverting again, gives us the special
conformal transformations Cjp,, which act as follows:

X*=(Cpx)* =RTy Rx)* = (x* —b*x,x") /(1 = 2byx" + b,b x5x7).
(2.8)
The operators Cj, belong to the conformal group, and can be continuously connected
to the identity.

2.2 Conformal Compactification

We can describe Minkowski space M® using light cone coordinates. Choose a
particular (spatial) direction in R3. Such a direction is specified by a unit vector 7,
labeled (for example) by an appropriate choice of angles in spherical coordinates. A
vector x € R3 is then labeled by angles and by the coordinate u, with —0o < u <
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00, and X - X = u2. With respect to this direction, we introduce the usual light cone
coordinates,

ut = %(xo +u). (2.9)

Then for x = xo, X), we have x, x* = 2u™u 5 SO under conformal inversion
"
(Wlth obvious notation),

wt=—, u~ = —. (2.10)

To obtain the conformal compactification M # of the (3 + 1)-dimensional
Minkowski space M®, we formally adjoin to it the set 7 of necessary “points
at infinity.” These are the images under inversion of the light cone L® < M®
(defined by either u™ = 0 or u~ = 0), together with the formal limit points of L®
itself at infinity (which form an invariant submanifold of 7). Here J is the well-
known “extended light cone at infinity.” The resulting space M* = M® U J has
the topology of §3 x §'/Z,.

In the above, we understand the operators T, Al', D;, R, and Cp as trans-
formations of M*. Including these operators but leaving out R, we have what is
often referred to as the “conformal group,” all of whose elements are continuously
connected to the identity. There are many different ways to coordinatize M* and to
visualize its structure, which we shall not discuss here.

3 Inverse Minkowski Space

3.1 Motivation and Definition

In the preceding construction, which is quite standard, there is a small problem
with the units. We glossed over (as do nearly all authors) the fact that x # has the
dimension of length, while the expression for (R x)* has the dimension of inverse
length. Thus we cannot actually consider R as a transformation on Minkowski space
(or on compactified Minkowski space) without arbitrarily fixing a unit of length!

Furthermore, regarding the formula for (Cj x)*, it is clear that b must have the
dimension of inverse length; but in the expression for (73 x) #, it has the dimension
of length.

Kastrup [5] suggested introducing a Lorentz-invariant “standard of length” «
at every point, having the dimension of inverse length, and working with the
dimensionless coordinates n* = xx* together with «. This leads into a discussion
of geometrical gauge properties of Minkowski space.

Let us consider instead the idea of introducing a separate “inverse Minkowski
space” [M™®]~! whose points z have dimension of inverse length. Then we can



Conformal Symmetry Transformations and Nonlinear Maxwell Equations 215

let * = (R x)* = x*/x,x" belong to [M®]~1. As before, in order to deﬁne

R on the light cone, we shall need to compactify: first, to compactify [M @7-1

50 as to include the image points of R acting on the light cone in M™®, and then

to compactify [M @1, obtaining [M*]~! and M# The two spaces are, of course,

topologlcally and geometrically the same, with R:M* > M ’h’t]_1 and its inverse
M > M, glven by the same formula: x* = z*/z,z"

Just as we have T,, ALY, D;, and C) acting in Mm* (allowmg a to have the
dimension of length, and b to have the dimension of inverse length), we now define
corresponding transformations, Tp, A%, D,, and C, acting in [M*]~!, using the
same formulas as before, but with z replacing x. Thus, (T;J )H =z* —bH* and so
forth. Now,

Cb— f]é, D)LZI,é_lbl/)LI%, A=R_ll~\1,é, T, Zé_lébé.
(3.1)

3.2 Conformal Lie Algebra

The well-known Lie algebra of the conformal group has 15 generators, as follows:
[Pu, P)1=0, [Ku, Ky1=0, [Py, dl=P,, [Kydl=-K,,
[Pus Japl = 8uaPp — 8up Py [Kus Jaupl = 81aKp — 8upKa, (3.2)
[Juvs Jagl = (usual Lorentz algebra), [Py, K,]=2(gud— Jy),

where the P, generate translations, the K, generate special conformal transforma-
tions, the Jop generate Lorentz rotations and boosts, and d generates dilations.

Evidently the exchange P, — K, K, — P,,d — —d leaves the Lie algebra
invariant. This fact is now easily understood, if we think of it as conjugating the
operators in M with the operator R to obtain the generators of transformations in
[M#]~1:

P,=RK,R'", K,=RP,R7!, d=R(-dR™', J=RJIR' (33

3.3 Some Comments

To relate the original conformal inversion R to R, we may introduce an arbitrary
constant A > 0, having the dimension of area. Let A (M®]1 > M@ be the
operator x* = Az*. Then define x'#* = (Rax)* = (AAléx)“ = Ax"/x,x?", for
A > 0. Note that Ri = I, independent of the value of A.
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Now (letting b have units of length), we have (RoTpRax)"* = (Cp/ax)*, and
we can work consistently in the original Minkowski space and its compactification.
The introduction of the constant A parallels Kastrup’s introduction of the length
parameter k.

However, it is also interesting not to follow this path, but to consider the doubled,
compactified Minkowski space M* U [M*]7!; i.e., the disjoint union of M* and its
inverse space. It is possible to define Maxwell fields on the doubled space, making
use of the conformal inversion.

Finally we remark that a similar construction of an “inverse spacetime” can be
carried out for the Schrodinger group introduced by Niederer [8]. The Schrodinger
group consists of the Galilei group, dilation of space and time given by D, (¢, x) =
(kzt, AX), and additional transformations that can be considered as analogues of
special conformal transformations. The latter transformations can be obtained as
the result of an inversion, followed by time translation, and then inversion again.
Here the inversion is defined by R : (r,x) — (—1/¢t,x/t), with R%: (1,X) —
(t, —x). Note that for the Schrodinger group, there is only a one-parameter family
of transformations obtained this way, in contrast to the four-parameter family of
special conformal transformations; the Schrodinger group is only 12-dimensional,
while the conformal group is 15-dimensional.

Under inversion, the dimensions again change. Here, they change from time
and space to inverse time and velocity, respectively. Again one compactifies, and
again we have the option to introduce a “doubled spacetime,” where now it is a
compactified Galilean spacetime which has been doubled.

4 Nonlinear Electrodynamics: General Approach

4.1 Motivation and Framework for Nonlinear Maxwell Fields

Let us write Maxwell’s equations as usual (in SI units), in terms of the four fields
E,B,D, and H:

VxE:—E, V-B=0, VxH=@+j, V:-D=p. 4.1)
at at
The constitutive equations, relating the pair (E, B) to the pair (D, H), may be linear
or nonlinear. Our strategy is to introduce general constitutive equations respecting
the desired symmetry at the “last possible moment.”
Now the general nonlinear theory with Lorentz symmetry has constitutive
equations of the form

1
D=MB+—NE, H=NB-ME, 4.2)
C
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where M and N may depend on the field strengths via the two Lorentz invariants
2 1o
L =B"-—SE", L=B-E. (4.3)
c

In the linear case, M and N are constants.

Our initial motivation for studying nonlinear Maxwell theories with symmetry
was to explore the existence of a Galilean limit [3]. It is well known that taking a
Galilean limit ¢ — oo in the linear case requires losing one of the time-derivative
terms in Maxwell’s equations, as described carefully by Le Bellac and Lévy—
Leblond [7]. But in the general nonlinear case (allowing non-Lagrangian as well
as Lagrangian theories), we showed that all four Maxwell equations can survive
intact. Here /1 and I survive, and can yield nontrivial theories in the ¢ — oo limit.

We remark here that introducing conformal symmetry in this context further
restricts the invariants, leaving only the ratio I/ as an invariant.

In covariant form, Maxwell’s equations are written (in familiar notation):

WF*P =0, 0,6 =jP, 4.4)
where

~ 1

FP = Ee“ﬁ‘”F,w and  Fjy = d,A, — dvA, . (4.5)
Here the constitutive equations relate G to F and F. With Lorentz symmetry, they
take the general form

al al
1 M 2

G" = NF*™ + cMF™ = M, + M, ,
dF,, dF,

(4.6)
where M and N (or, equivalently, M and M>) are functions of the Lorentz invariants
I and I7:

1 i
h=3FuF" . b= —EFWF‘”. 4.7)

4.2 Transformations Under Conformal Inversion

Under conformal inversion, we have the following symmetry transformations of the
electromagnetic potential, and of spacetime derivatives:

A;l(x/) = xZAM(x) — 2x,(x%Ag) (4.8)

/. 0 2
0 = 5 =x20 = 2x,(x - 9) (4.9)
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where we here abbreviate x2 = xyuxt and (x - 9) = x%9y. Then with Fy, =
Ay — 0,A,, we have:

Fl,(x) = (x3)? Fuy(x) — 2x2x% (xy Fay + X0 Fpuar) (4.10)
and
O = (x*)?0 — 4x*(x - 9), (4.11)
where the d’Alembertian [ = 9,,0". Additionally, the 4-current j,, transforms by
J ) = @) =203, (0 ja () - (4.12)
These transformations define a symmetry of the (linear) Maxwell equations,
OA, —3,(3%Ay) = jy . (4.13)

That is, if A(x) and j(x) satisfy (4.13), then A’(x") and j'(x’) satisfy the same
equation with (0’ and 8’ in place of (] and 9, respectively. Combining this symmetry
with that of the Poincaré transformations and dilations, we have the symmetry with
respect to the usual conformal group.

But note that the symmetry under conformal inversion can be interpreted to
suggest not only a relation among solutions to Maxwell’s equations in M*, but also
the definition of new Maxwell fields on the inverse compactified Minkowski space
[m*)~.

4.3 Steps Toward General Nonlinear Conformal-Invariant
Electrodynamics

We see the remaining steps in constructing general, nonlinear conformal invariant
Maxwell theories (both Lagrangian and non-Lagrangian) as the following. Identi-
fying M* with the projective light cone in the (4 + 2)-dimensional space ¥©, we
write Maxwell fields in Y(©, and constitutive equations in Y© . The constitutive
equations depend only on conformal-invariant functionals of the Maxwell fields in
Y© which we identify. To restrict the theory to the projective light cone, we then
carry out a dimensional reduction procedure, as discussed by Nikolov and Petrov
[9]. In doing this we make use of the “hexaspherical space” Q(®—transforming all
the expressions to hexaspherical coordinates, and proceeding from there.
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5 Related (4+2)-Dimensional Spaces

In this section we review the (4 +2)-dimensional spaces ¥ © and Q©, highlighting
how conformal inversion acts in these spaces.

5.1 The Space Y©

Fory € RO, write y=0u"),m=0,1,...,5, define the flat metric tensor 7,,, =
diag[1, —1, —1, —1; —1, 1], so that

YY" =y = 092 =D =2 = = 0D+ D 6D
This is the space we call ¥(©®. The light cone L© is then the submanifold
specified by the condition,

" =0, or 02+ 0D+ 0N+ 0D = 002+ (62

To define the projective space PY© and the projective light cone PL©®, consider
y = (™) € Y©, and define the projective equivalence relation,

(") ~ (Ay™) for A€ R, L £0. (5.3)

The equivalence classes [y] are just the rays in ¥ ©; and PY(© is this space of rays.
To describe the projective light cone P L(®, we may choose one point in each ray
in L Referring back to Eq. (5.2), if we consider

O+ 0D+ 0D+ 0H? = 0D+ 0N = 1, (5.4)

we see that we have S° x S!. But evidently the above condition selects two points
in each ray; so PY® can in this way be identified with (and has the topology of)
3 x S/ 2,.

Furthermore, PL® can be identified with M*. When y* 4+ y> # 0, the
corresponding element of M# belongs to M® (finite Minkowski space), and is
given by

m
Y
xt* =

= m, n = O, 1,2,3. (55)

The “light cone at infinity” corresponds to the submanifold y*+y> = 0in PL®.
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5.2 Conformal Transformations in Y ©®

The 15 conformal group generators act via rotations in the (4+2)-dimensional space
Y© 5o as to leave PL©® invariant. Setting

Xmn = Ym0y — Ynom (m < n), (5.6)
one has the 6 rotation and boost generators
Mpyn = Xmn O <m<n<3), (5.7)
the 4 translation generators
Pp=Xms —Xma (0=m=3), (5.8)
the 1 dilation generator
D = —Xus, (3.9)
and the 4 special conformal generators,
Kn = —Xms —Xma, (0<m<n<3). (5.10)
But of course, from these infinitesimal transformations we can only construct
the special conformal transformations, which act like (proper) rotations and boosts.

Conformal inversion acts in ¥ © by reflection of the y> axis, which makes it easy to
explore in other coordinate systems too:

Y =y"m=0,1,2,3,4), y =-y°, (5.11)

or more succinctly, y'" = K™ y", where K" = diag[1,1,1,1, 1, —1].

5.3 The Hexaspherical Space Q®

This space is a different (4 + 2)-dimensional space, defined conveniently for
dimensional reduction. For ¢ € R®, write ¢ = (¢%) with the index a =
0,1, 2,3, +, —. Then define, for y € Y© with y4 + y5 # 0,

a v - YY"

= (@=0,1,2,3); qt=y"+y7; =" 512
q y4+y5( )i g =y +y q OF 1372 (5.12)
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In Q© the metric tensor is no longer flat:

@)’gu 0 0
8ab(q) = 0 9 & (5.13)
0 %0
2
The projective equivalence is simply
@.q".q* ¢*q"a) ~ @ q" ¢’ ¢’ hgt gD, A #O. (5.14)

We comment, however, that with this metric tensor, the map from contravariant
to covariant vectors in Q(G) is actually two-to-one; hence, it is not invertible. This
suggests that one can improve on the hexaspherical coordinatization, a discussion
we shall not pursue here.

When we take ¢~ to zero, we have the light cone in Q(®, while fixing the value
g* = 1is one way to select a representative vector in each ray. Another comment,
however, is that fixing ¢ actually breaks the conformal symmetry. This is a subtle
point that does not cause practical difficulty, but seems to have been unnoticed
previously.

Convenient formulas for the transformation of g-coordinates under conformal
inversion may be found in [2].

6 Maxwell Theory with Nonlinear Constitutive Equations
in (4 4+ 2)-Dimensional Spacetime

6.1 Nonlinear Maxwell Equations in Y ©

Next we introduce 6-component fields A, in Y ©) and write
an = amAn - anAm , (6.1)

so that

8F,,]1(,, N 3 Foi N 3 Fim
dy ay™ ay"

=0. 6.2)

While this is not really the most general possible “electromagnetism” in 4 space and
2 time dimensions, it is the theory most commonly discussed in the linear case, and
the one we wish to generalize. As before, we defer writing the constitutive relations,
and we have:

8 Gml’l
ay™

= J", (6.3)

where J" is the 6-current.
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For the nonlinear theory, we next need general conformal-invariant nonlinear
constitutive equations relating G™" to F,,,. But conformal invariance now means
rotational invariance in Y ©® . Thus we write

Gmn — Rmnkl F;iﬂ + Pmnklrs sz Fr_&‘ , (64)
where the tensors R and P take the general form,
Rmnk[ =r(-) (nmknfn _ nnkném) , and Pmnkﬁrs =p(-) €mnldirs ) (6.5)

Here r and s must be functions of rotational invariants, which we next write down.

6.2 Invariants for the General Nonlinear Maxwell Theory
with Conformal Symmetry

We can now write two rotation-invariant functionals of the field strength tensor in
Y©  The first invariant is, as expected,

1
Iy = 5 FunF"™. (6.6)

But unlike in the (3+1)-dimensional case, the second rotational invariant is trilinear
in the field strengths:

1 )
L = Eemnkﬁrs Foun FreFrs . (6.7)

This is a new pattern. Then, in Eq. (6.3), we have
r=rli, ), p=pU,h), (6.8)

with I; and I, as above.
In Q(6), the invariants take the form,

1 1
@) =3 (@ F(q) = 5 88" Fup(q) Fea (q) , (6.9)

hL(q) = €cde8 F (@) Foa(q) Feg (@) (6.10)

(q*)
1 - .
= 5(detJ) €?cde8 F () Fea(q) Feg (@)

where J is a Jacobian matrix for transforming between y and g-coordinates. Note
that in the above, € is the Levi—Civita symbol. The Levi—Civita tensor with raised
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indices is defined generally as (1/4/]g[ )€, where g = det[g,»]. Here this becomes
(det J) e@bedes,

The explicit presence of g7 in the expression for I, explains why the condition
g+ = 1 does not respect the conformal symmetry: the value of g can change under
conformal transformations.

7 Dimensional Reduction to (3 4+ 1) Dimensions

The final steps are to carry out a ray reduction and dimensional reduction of the
(4 4 2)-dimensional Maxwell theory with conformal symmetry.

A prolongation condition states that the Maxwell fields respect the ray equiva-
lence in Y (©):

VoA o Ay . (7.1)

A splitting relation allows the characterization of components tangential to LC©):

A,
ay"

= 0 (a gauge condition). (7.2)

One then expresses everything in Q(® (hexaspherical coordinates), and restricts
to the light cone by taking g~ — 0, to obtain (as in the linear case) a general
conformal nonlinear electromagnetism in (3 + 1) dimensions, with some additional
fields surviving the dimensional reduction.

In this article we have highlighted some new features suggested by the conformal
symmetry of nonlinear Maxwell fields, including the idea of doubling the compact-
ified Minkowski spacetime, and the trilinear form of one of the conformal invariant
functionals in Y ©. For some additional details, see also [2].
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